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Abstract

The U.S. National Park System protects some of the world’s most spectacular
resources and attracts 300 million visits each year, generating surplus for visitors and
supporting local economies. I create a versatile and unified framework to analyze
demand for U.S. national parks. Combining nationally representative surveys with
park-level visitor counts, I estimate a discrete-choice model of visitation from 2005
through 2019. The model controls for changing travel costs and inter-park substitution
while permitting the use of causal inference techniques. I apply the framework to
analyze how long-run average temperatures and short-run temperature shocks impact
demand. Visiting a park generates the most surplus when average high temperatures
fall between 70◦F and 85◦F. Relative to this ideal range, visiting when the temperature
is 30◦F reduces willingness to pay by $503 per-trip, while visiting when the temperature
is 95◦F reduces willingness to pay by just $107. Positive temperature shocks increase
willingness to pay when temperatures are less than 80◦F and have no discernible impact
at warmer temperatures. The results provide insight to the welfare impacts of climate
change, and the framework is broadly applicable to management challenges facing the
national parks.
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1 Introduction

In 1916, the National Park Service was created to conserve the United States’ most significant

sites, scenery, and wildlife (“Organic Act of 1916”). More than 100 years later, the National

Park System includes over 400 parks, which collectively attract 300 million visits each year.

The parks generate surplus for visitors and support nearby gateway communities (Cullinane

Thomas, Flyr, and Koontz 2022). They are so quintessentially American that Ken Burns

featured them in a documentary titled, “America’s Best Idea.”

Conserving important and popular resources creates management challenges. At the most

famous parks, large crowds create air pollution that rivals metropolitan areas (Keiser, Lade,

and Rudik 2018). In rare cases, parks have turned away visitors because of overcrowding.

Crowds also exacerbate challenges caused by stagnant federal funding, contributing to the

National Park Service’s $21.8 billion deferred maintenance backlog (“NPS 2022”). Recent

legislation to boost funding therefore provides critical financial support.1 Meanwhile, climate

change has already begun to alter the resources the National Park Service was created to

protect. Sea level rise, wildfires, drought, and extreme weather events, amplified by climate

change, pose threats to the United States’ most treasured resources. Understanding how

these challenges impact visitation aligns with the National Park Service’s core mission of

conservation for the enjoyment of present and future generations.

This paper creates a versatile and unified framework to analyze demand for the U.S.

National Park System. I introduce a random utility maximization model of visitation for

140 national parks, all those protected for their natural resources, in which individuals

repeatedly choose which park to visit and whether to drive or fly.2 The model includes a full

set of park-by-month fixed effects. I call these parameters park effects, and they capture the

mean utility of visiting a park while controlling for the travel costs needed to get there. In
1The Great American Outdoors Act (2020) and the Bipartisan Infrastructure Law (2022) both provide

substantial funding to the National Park System.
2The system also includes historic sites that I do not explicitly model (e.g. Theodore Roosevelt Birthplace

National Historic Site).
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plain terms, they provide an index of national park awesomeness.

I introduce a two-step estimation procedure that combines two nationally representa-

tive telephone surveys, a fifteen-year monthly panel of park-level visitor counts, and a rich

collection of statistics describing park attributes. The first step uses maximum likelihood

estimation and the contraction mapping introduced by Berry (1994) to combine the survey

and visitor count data. In effect, it filters the visitor counts through the structural model to

produce a monthly panel of park effects from 2005 through 2019. In the second step, I regress

the park effects on park attributes. I leverage variation both within and between parks to

estimate willingness to pay for a variety of attributes, including elevation, land cover, and

wildlife presence. Because the first step preserves the panel structure of the visitor counts,

causal inference techniques, such as difference-in-differences and event-study designs, can be

applied within the structural model.

I demonstrate the versatility of the framework by estimating the impact of temperature

on demand. I decompose the temperature impact into long-run differences and short-run

shocks. Decomposing the temperature impact captures responses to both gradual warming

and the increased frequency of heat waves and cold snaps expected from climate change. I

measure long-run differences using monthly ten-year moving averages, which roughly reflect

the expected temperature at a park if a visitor were planning their trip more than a few weeks

in advance. I measure short-run shocks using the difference between realized temperatures

and the monthly averages. By including a flexible set of fixed effects, I identify the impact of

long-run differences using within-season variation in a park’s average temperature. I identify

the impact of short-run shocks using the same within-season variation, while controlling for

average temperature.

I find that “bucket list” parks such as Yellowstone, Glacier, and Grand Canyon consis-

tently rank in the top ten of the national parks awesomeness index. Observable attributes

explain 56% of the variation in this index. Visitors tend to prefer parks with redwood

forests, bison, bald eagles, wide-ranging elevation, and shoreline. These attributes vary little
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across time, posing a challenge for causal inference. Yet, my estimated park effects reveal

previously unexplored seasonal variation, making a causal interpretation more plausible for

attributes that vary across time. For parks with harsh winters, willingness to pay peaks in

the summer months, while parks with more moderate climates provide more stable mean

utility throughout the year.

Applying the framework, I find that visiting a park generates the most surplus when

average high temperatures fall between 70◦F and 85◦F. Outside of this range, cold reduces

willingness to pay more than heat, and long-run differences impact willingness to pay more

than short-run shocks. Compared to the ideal temperature of 70◦F, visiting when the temper-

ature is 30◦F reduces average willingness to pay by $503, while visiting when the temperature

is 95◦F reduces average willingness to pay by just $107. Meanwhile, when the temperature is

less than 80◦F, a positive 5◦F shock increases average willingness to pay and has the greatest

impact between 40◦F and 50◦F. I find no evidence that shocks decrease willingness to pay

at temperatures above 80◦F. Although, I cannot rule out large impacts due to my imprecise

estimates. Overall, my results imply that climate change could increase welfare, since visi-

tors dislike extreme cold more than they dislike extreme heat. Of course, this inference holds

other park attributes fixed and therefore ignores the potential degradation in park ecology

(e.g., species loss) that could result from climate change.

Many previous studies analyze recreational demand for the National Park System, in-

cluding several that are national in scope. The closest studies to mine use panel data to

model visitation. Szabó and Ujhelyi (2021) study how national parks affect a broad suite

of local economic outcomes. They find that a national park designation increases visitation

by 17% and increases local economic activity along many dimensions.3 Like me, two stud-

ies analyze the impact of temperature on visitation. Henrickson and Johnson (2013) study

visitation to 56 national parks using annual data, which fails to capture seasonal differences
3Each National Park Service unit carries an official designation (e.g., National Park, National Lakeshore,

National Monument). All units are commonly referred to as “national parks,” and I refer to all units as
parks throughout the paper.
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in temperature. Fisichelli et al. (2015) study visitation to 340 parks using monthly data

averaged across 35 years, which fails to capture the effect of short-run shocks. My study cap-

tures both long-run differences and short-run shocks to monthly temperatures. Additionally,

these papers all use reduced-form approaches, which suffer from several limitations in this

setting. First, visitors may substitute between parks in response to park closures or changes

in attributes, including temperature. In this case, substitute parks are effectively “treated”

and are no longer valid controls. I address this concern by modeling the full park demand

system, which captures the availability and quality of substitute parks. Second, geographic

shifts in population may impact parks differently, violating the common-trends assumption

and confounding changes in park attributes. The U.S. population has shifted south and west

over the past two decades, closer to many national parks but farther from others, and has

become increasingly concentrated in urban areas. I account for these changes by explicitly

modeling park visits as a function of where people live in every year relative to every park.

Finally, while park visitation is informative, it cannot be used directly to measure welfare

losses from park closures, climate change, or other factors. My model provides a structure

for calculating these welfare impacts. Like me, Neher, Duffield, and Patterson (2013) esti-

mate willingness to pay for a large number of parks and then explain willingness to pay as

a function of attributes in a second-stage regression. But they estimate demand using 58

separate count-data models and a single year of data at each park. In contrast, I estimate

demand for 140 parks in a single unified framework, combine microdata and aggregate data,

and exploit monthly panel data over fifteen years to generate causal estimates.

The recreation demand literature frequently employs random utility maximization models

to estimate the value of recreation sites or environmental attributes (Egan et al. 2009;

Kolstoe and Cameron 2017; G. Parsons et al. 2020). The estimation procedure I introduce

is most closely related to the two stage approach introduced by Murdock (2006), which

applies the contraction mapping from Berry (1994) to estimate a full cross-section of site

fixed effects. Including a full cross-section of site fixed effects eliminates bias from omitted
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site characteristics in the first stage, but because Murdock’s second stage is a cross-sectional

regression, estimates of preferences for site attributes still suffer from omitted variables bias.

I better control for omitted site attributes by leveraging panel data econometric techniques

in my second stage. In a recent best practices paper, Lupi, Phaneuf, and von Haefen (2020)

emphasize the need for more rigorous identification in recreation demand studies, and my

procedure provides a versatile method for applying casual inference techniques in random

utility maximization models.

By analyzing recreation demand at a national scale, my approach also builds on English

et al. (2018), which quantifies the value of recreational losses from the Deepwater Horizon

oil spill. The authors use a nationally representative survey with over 41,000 respondents

and calculate travel costs of flying and driving. They calibrate their model using visitor

counts to estimate preferences under both non-spill and spill conditions. My paper differs in

several important ways. First, I generate a monthly panel of park effects, while English et

al. estimate a single difference between non-spill and spill conditions. Estimating a monthly

panel allows for site-specific and temporal heterogeneity. Second, I explain park effects using

park attributes, allowing me to study the welfare impacts of changes in these attributes.

Finally, I explicitly model the decision to fly or drive to a recreation site, while English et

al. use a weighted average of flying and driving costs when calculating travel costs.

My approach also has substantial practical value. Individual survey efforts are costly,

and they rarely occur continuously across multiple years. Yet, consistent visitation data is

critical for understanding how visitors value changes in environmental amenities. I show

how a structural model and visitor counts can be combined to make up for infrequent survey

data. By calibrating my model with visitor counts and annual American Community Survey

microdata, I estimate responses to park attribute changes outside the survey period and

bridge the gap between costly individual-level surveys.

Finally, my paper contributes to a growing literature valuing the nonmarket impacts

of climate change, which are critical and understudied inputs to the social cost of carbon
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(Burke et al. 2016). Recent research has valued climate impacts on crime (Hsiang et al.

2017), mortality (Carleton et al. 2022), and recreation (Chan and Wichman 2022; Parthum

and Christensen 2022). Within the recreation literature, Dundas and von Haefen (2020)

estimate the welfare impacts of climate change on recreational marine fishing with a similar

approach to my paper. However, in their model, temperature only affects the participation

choice, while I allow temperature to impact both the participation choice and the site choice.

This is critical in my setting, where temperatures vary substantially across parks. Like me,

Dundas and von Haefen find larger responses to cold than to extreme heat, but I document

a narrower range of ideal temperatures and separate responses to long-run differences versus

short-run shocks.

Section 2 describes the nationally representative telephone survey, monthly visitor counts,

and park attributes data. Section 3 outlines how travel costs are calculated for both driving

and flying travel modes. Section 4 presents the model of national park visitation. Section

5 details the two-step estimation procedure and its benefits. Section 6 describes the general

results, and section 7 applies the framework to study the impact of temperature on demand.

Section 8 concludes.

2 Park Visitation and Attributes Data

The main data sources for this project describe individual-level visitation, park-level visita-

tion, and physical and institutional attributes of the national parks. This section describes

each of these data sources.

2.1 Individual-Level Visitation Data

The individual-level visitation data come from the National Park Service’s Comprehensive

Survey of the American Public. The survey conducts telephone interviews with the primary

goal of gauging sentiment towards the National Park System. The roughly fifteen-minute
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interview includes several questions regarding individuals’ visitation history. These questions

provide the location of the most recent national park visit and the number of visits over the

previous two years. For random subset of the sample, I also observe whether respondents

drove or flew on their most recent visit.

Several characteristics of the Comprehensive Survey of the American Public make it a

uniquely useful data source for studying national park visitation. It includes both visitors

and non-visitors, allowing me to model the extensive-margin the choice to visit or not visit. It

is nationally representative. Phone numbers are selected using a regionally-stratified random

sampling design, and individuals are randomly selected within each household. The data

include weights to account for the regional stratification and match sample demographics

statistics to the Census, so weighted mean demographics from the survey closely match

mean demographics of the general population (table 1). I use these weights throughout my

analysis. Additionally, the survey was conducted twice: once in 2008 and 2009 and again in

2018. The two iterations are similar, with identical visitation history questions. The 2008

and 2009 interviews were split between seasons to account for seasonal variation in visitation.

The 2018 survey, citing a lack of seasonality in the 2008 and 2009 data, conducted interviews

from June through November.

The Comprehensive Survey of the American Public also has important limitations. First,

I observe respondents’ home locations imprecisely. In the 2008 iteration, the data include the

area code of each respondent’s telephone number and their state of residence. In the 2018

survey, the data only include respondents’ state of residence. When the area code is within

the state of residence, I take the largest city in the area code as the home city for calculating

travel costs. When I only observe the state of residence, I randomly sample a home city

according to the state’s population distribution. Second, the survey does not include any

information on visit dates, only that the visits occurred within two years of the interview.

This limits my ability to capture seasonal variation in certain parameters, including the

travel cost coefficient. I discuss the implications for estimation in section 5. Finally, many
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Table 1: Telephone Survey Descriptive Statistics

Unweighted Weighted Census

Age
18-29 11.8 21.3 23.6
30-39 13.5 16.3 16.9
40-49 16.7 16.7 18.4
50-59 24.1 20.8 17.5
60-69 18.5 14.3 12.0
70+ 15.1 10.4 11.3

Income
Less than $10,000 4.5 6.0 12.6
$10,000 to $25,000 9.5 11.0 15.0
$25,000 to $50,000 20.3 23.2 23.5
$50,000 to $75,000 20.8 22.2 18.9
$75,000 to $100,000 17.3 15.9 13.5
$100,000 to $150,000 15.4 13.1 10.7
Greater than $150,000 12.0 8.3 5.4

Education
Some high school 3.5 5.5
High school degree 36.8 46.9
College degree 35.8 32.0
Graduate degree 22.8 14.6

Has child 29.7 35.3 38.4
White, non-Hispanic 75.0 67.9 63.7
Region

Alaska 14.1 0.2 0.2
DC only 11.6 0.2 0.1
Intermountain 14.9 14.9 15.1
Midwest 14.6 22.9 22.6
Northeast 15.1 22.9 23.2
Pacific 14.8 16.8 17.3
Southeast 14.7 21.8 21.2

Visited in past 2 years 67.9 61.7
Avg number of visits 9.2 4.7
Flew (Subsample N = 1537) 13.5 12.6
Sample size 6762 6762

Note: The table shows the share of respondents in various demo-
graphic groups for the pooled 2008-2009 and 2018 Comprehensive
Survey of the American Public survey data compared to statistics
from 2010 Census data. Weights are included in the survey and
match survey statistics to Census averages. Thus, the weighted vari-
able means align closely with Census means. The unweighted sam-
ple tends to be older, richer, and more white, non-Hispanic than the
general population.
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national parks are never chosen as a respondent’s most recent visit. To estimate a full set

park effects, I must incorporate visitor count data.

2.2 Park-Level Visitor Counts

The National Park Service publishes monthly, park-level visitor counts in their Visitor Use

Statistics database. The counts have a broad temporal and geographic scope, dating back to

1905 for some of the oldest parks and covering 383 national parks. I use counts from January

2005 through December 2019, because this period overlaps closely with the individual-level

survey data and American Community Survey microdata.

Counting procedures vary by park and typically involve National Park Service rangers

at entry booths and/or strategically placed vehicle counters. Parks use person-per-vehicle

multipliers to convert vehicle counts to person counts. Busy peak seasons, available tech-

nology, and often remote locations make it difficult to obtain exact counts. Nonetheless, the

Visitor Use Statistics are used administratively and in many academic studies of national

park visitation (Fisichelli et al. 2015; Keiser, Lade, and Rudik 2018; Henrickson and Johnson

2013).

I adjust the raw visitor count data to make them suitable for recreation demand modeling.

This process accounts for re-entry, group size, international visitation, and the primary

purpose of trips using on-site surveys from the Visitor Services Project. I use 105 on-

site surveys conducted at 69 different parks between 1995 and 2019. For parks that have

not conducted an on-site survey, I impute missing information based on observable park

attributes. With the park-specific trip information, I multiply raw visitor counts by the

share of domestic visitors and the primary purpose of respondents’ visits, then divide by the

per-trip re-entry rate and average group size.
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Table 2: Park Attribute Data Sources

Source Variables

USGS National Map Elevation range, mean elevation, trail miles, number of lakes >
40 acres, area of lakes > 40 acres

NPS Administrative Data Designation (Park, Lakeshore, Seashore, etc), acreage, coastal,
miles of shoreline, species presence

2004 NLCD Share of land by landcover type, mode landcover type, landcover
diversity (Herfindahl-Hirschman Index)

Census Road miles, population density of overlapping counties

NCEI Monthly avg max temperature, days with precipitation > 0.1",
monthly 10-year avg temperature

Note: The table shows data sources for park attributes and variables generated from them. NPS
Administrative Data include the NPSpecies database, Annual Acreage Reports, and a 2011 Resource
Report on Shoreline length. NCEI data come from weather station-based Global Summary of the
Month reports. NLCD - National Land Cover Database, NCEI - National Center for Environmental
Information.

2.3 A Statistical Atlas of the National Parks

To understand visitor preferences for park attributes, I consolidate several datasets describing

the national parks themselves. Table 2 shows the full list of data sources and the variables

I generate from them.

3 How much does it cost to visit the national parks?

This section describes the procedure for computing travel costs. I calculate travel costs at a

quarterly frequency for every individual in the nationally representative telephone surveys,

as well as every individual in American Community Survey microdata between 2005 and

2019. I use these microdata to calibrate the model outside the survey period. Travel costs

include the time and money required for individuals to drive or fly to each of the national

parks. These calculations closely follow English et al. (2018), which also computes driving

and flying travel costs at a national scale.

To compute driving travel costs, I calculate the driving mileage and time from each

respondent’s home location to each national park using PC*Miler. I multiply mileage by the
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marginal cost of driving, which I calculate with per-mile maintenance and tire costs from

annual AAA reports and regional gas prices from the Energy Information Agency. For every

twelve hours of driving, I add the average U.S. hotel rate. I also make a standard assumption

that the cost of travel time is one-third of a respondent’s hourly wage rate.

Flying travel costs include travel time, plus the cost of driving to the origin airport,

airfare, and the cost of driving from the destination airport to the park, which may include

rental car prices. Quarterly average airfare data come from the U.S. Department of Trans-

portation’s Consumer Airfare report, which includes the average airfare for flights between

city markets, rather than individual airports. I use the 2012 average rental car price from

English et al. (2018), adjusting for inflation to approximate rental car prices in other years.

For each individual-park pair, I compute travel costs for all routes originating at one of the

four city-markets closest to the respondent’s home and ending at one of the four city-markets

closestto the park. I then select the cheapest of these routes as the individual’s travel cost

of flying to the park.

Figure 1 shows the flying and driving travel costs for a subset of the telephone survey

sample. Driving travel costs increase approximately linearly with one-way driving distance,

with different slopes for each income bin. On average, flying is more expensive than driving

for trips under 1,600 miles but is cheaper at longer distances, matching calculations from

English et al.

4 A model of national park visitation

In this section, I outline a model describing the choices of which national park to visit and

how to travel. By jointly modeling the choice of park and the choice of travel mode, I build

on both the recreation demand literature, which typically focuses solely on location choice,

and the transportation literature, which has a rich history modeling travel mode choices
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Figure 1: The graph plots calculated round trip travel costs on one-way driving distance for
a three percent subset of the 2008 survey sample. Brown circles show driving travel costs,
and blue x’s show flying travel costs. Lines show average travel costs by distance for both
driving (solid) and flying (dashed). On average, flying travel costs increase more gradually
with distance.
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(McFadden 1974).4 The model also shares similarities with work by Chintagunta, Dubé,

and Goh (2005), which allows for time-varying mean utilities when modeling demand for

margarine.

Suppose that each month individuals choose whether to visit a national park, which

national park to visit, and whether to drive or fly to the park. Denote the set of national

parks J = {1, 2, ...J} and the set of travel modes M = {D, F}, where D and F indicate

driving and flying, respectively. Let j = 0 denote the outside option, each individuals’ best

way of spending the month that does not involve visiting a national park. Because visits to

the National Park System’s historic sites are included in the data but differ from visits to

nature-centered national parks, I group visits to historic sites into a second outside option,

j = J +1. Given this choice set, let Uijmt denote the utility individual i receives from visiting

national park j using travel mode m during month t, where

Uijmt =



δ0t + ϵi0t j = 0

δjt + βT CTCijDt + ϵijDt j ∈ {1, ..., J}, m = D

δjt + βF + βT CTCijF t + ϵijF t j ∈ {1, ..., J}, m = F

δJ+1,t + ϵi,J+1,t j = J + 1

(1)

≡



V0t + ϵi0t j = 0

Vijmt + ϵijmt j ∈ {1, ..., J}, m ∈ {D, F}

VJ+1,t + ϵi,J+1,t j = J + 1

(2)

In equation (1), coefficient βT C represents the marginal disutility of travel costs, and βF

represents the fixed cost of flying relative to driving. For j ∈ {1, ..., J}, I call the park-by-

month fixed effect, δjt, the park effect. It captures the mean utility provided by park j in

month t after controlling for travel costs. Ranking the park effects produces a national park
4An exception, Hausman, Leonard, and McFadden (1995) model the travel mode choice in a recreation

demand context. They create a model to quantify the recreational use losses of the Exxon Valdez oil spill.
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awesomeness index. I decompose the park effects further:

δjt = Xjtα + νjt, (3)

where Xjt contains observable park attributes; α is a coefficient vector, and νjt is unob-

servable.

Assume the error term, ϵijmt follows a Generalized Extreme Value distribution with a

two-level nested structure with the no-visit alternative in its own nest. This assumption

allows error terms for visit alternatives to be correlated and relaxes the Independence of

Irrelevant Alternatives assumption imposed by conditional logit models. The nested logit

model still imposes the Independence of Irrelevant Alternatives assumption within the visit

nest. Under this nesting structure, the probability of choosing each alternative has a closed

form:

Pijmt =



exp(V0t)
exp(V0t) + (∑J+1

k=1
∑

n∈M exp(Viknt

λ
))λ

, if j = 0

exp(Vijmt

λ
)∑J+1

k=1
∑

n∈M exp(Viknt

λ
)

(∑J+1
k=1

∑
n∈M exp(Viknt

λ
))λ

exp(V0t) + (∑J+1
k=1

∑
n∈M exp(Viknt

λ
))λ

, if j ∈ {1, ..., J}

exp(Vi,J+1,t

λ
)∑J+1

k=1
∑

n∈M exp(Viknt

λ
)

(∑J+1
k=1

∑
n∈M exp(Viknt

λ
))λ

exp(V0t) + (∑J+1
k=1

∑
n∈M exp(Viknt

λ
))λ

, if j = J + 1

(4)

For visit alternatives, the choice probabilities include two terms. The first indicates the

probability of visiting a specific park using a specific travel mode, conditional on choosing a

visit alternative. The second term indicates the probability of choosing any visit alternative.

If an individual chooses not to visit, then they do not select a specific park and travel

mode. Thus, the no-visit choice probability has only one term. The literature often refers

to the parameter, λ, as the dissimilarity coefficient. For consistency with random utility

maximization, λ is bounded between zero and one. Higher values of λ indicate more dissimilar
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alternatives in the visit nest, and λ equal to one simplifies the probabilities to match the

conditional logit model.

5 A Two-Step Approach to Estimate Demand

This section describes the procedure to estimate demand for national park visitation. My

procedure relates most closely to Murdock (2006), which introduced the two-step approach

for estimating recreation demand models. It is also similar to the maximum likelihood

estimator proposed by Berry, Levinsohn, and Pakes (2004), which combines micro and macro

level data to estimate demand for automobiles. However, the particular features of the survey

and visitor count data motivate a distinct procedure.

5.1 Step 1a: Maximum Likelihood with a Contraction Mapping

To begin, I estimate the parameters in equation (1). These include the marginal disutility

of travel costs, the premium for flying relative to driving, and observable heterogeneity in

preferences for park attributes. Because the individual-level survey data do not include

the date of respondents’ visits, I estimate a constant park effect for each survey period in

this step and drop the t subscript. I recover the monthly panel of park effects in Step 1b

(described below). Given seasonal travel patterns, the constant parameter restriction likely

introduces bias from mispecification.

I specify a three part likelihood function to fully incorporate the visitation information

contained in the survey data. Using the choice probabilities from equation (4), the likelihood

of observing individual i’s visitation history is:

Li(β, δ) = (ΠJ
j=0Πm∈MP

yijm

ijm )︸ ︷︷ ︸
(1)

(1 − Pi0)vi︸ ︷︷ ︸
(2)

(Pi0)24−1−vi︸ ︷︷ ︸
(3)

(5)

The first term represents the likelihood of individual i’s most recent visit. For this visit, I
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observe the park chosen, as well as the travel mode for a subset of respondents. The second

term represents the likelihood for all other visits in the two years prior to the interview,

where vi indicates the number of visits in the past two years in addition to the most recent

visit. The third term represents the likelihood from all non-visits in the two years prior to

the interview. If an individual never visits a national park in the two years prior to their

interview, then the model interprets this as choosing the no-visit alternative for each of the

24 months prior to their interview.

When maximizing the log likelihood function, I constrain the visitation shares predicted

by the model to match the visitation shares observed in the visitor count data. I impose the

constraint by applying the contraction mapping introduced by Berry (1994):

δn+1 = δn + ln(s) − ln(ŝ(δn, β)) (6)

As the optimization routine iterates over values of β, the contraction mapping solves for

the unique vector of park fixed effects, δ, that matches observed and predicted visitation

shares. Leveraging the contraction mapping has several practical benefits. First, it allows

me to simultaneously incorporate visitation information from individual-level surveys and

park-level visitor counts. Second, the contraction mapping solves for δ, so the optimization

routine must search only over β, reducing the estimation time. Finally, many parks are never

chosen in the survey data, so their park effects cannot be identified from the survey data

alone.

By estimating a full set of park effects, I control for bias from unobserved park attributes

when estimating the travel cost parameter. In industrial organization settings, firms set

prices and likely charge a higher price for products with desirable unobservable attributes.

The correlation between price and unobserved attributes biases naive estimates and has led

to the widespread use of instrumental variables. In the recreation demand literature, travel

costs are not set by firms directly, but unobserved attributes, such as remoteness, may be

correlated with travel costs. By including a full set of park effects, I control for unobserved
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attributes when estimating the travel cost coefficient (Murdock 2006). This approach is not

possible in industrial organization settings, because the price variable does not vary across

individuals.

Geographic sorting remains an identification concern (G. R. Parsons 1991). Individuals

who value national parks may choose their residential location to reduce their travel costs.

If individuals with low travel costs value national parks more highly than those far away and

would visit more often even conditional on travel costs, then the marginal disutility of travel

cost will be overstated. Sorting would bias travel cost coefficient estimates downward and

away from zero, subsequently biasing willingness to pay estimates towards zero. Few travel

cost papers address potential bias from sorting, and because of the limited use of travel cost

methods at a national scale, the magnitude of the potential bias is unclear.

5.2 Step 1b: Calibrating Park-Month Effects Over 15 Years

In this step, I recover a monthly panel of park effects by applying the contraction mapping

month-by-month, from January 2005 through December 2019. Calibration outside the survey

period raises several important concerns. The geographic distribution of population may

change significantly over the fifteen-year sample period. To account for this, I calibrate the

model using annual American Community Survey (ACS) microdata samples (Ruggles et al.

2021). The microdata contain key demographic variables, such as income, family structure,

and age, and they capture annual changes in the geographic population distribution. The

ACS microdata also represent the national population, like the telephone survey data.

The calibration also requires assumptions on stability of β across time. In this paper,

I assume β is constant across the entire fifteen-year calibration period. While this is not

necessary, the assumption is based on empirical results. In a preliminary robustness check,

I allow β to vary in the 2008 and 2018 individual-level survey periods and obtain similar

estimates both periods. Dundas and von Haefen (2020) also provide evidence supporting

this assumption. They allow travel cost coefficients to vary annually and obtain fairly stable

18



estimates from 2004 through 2009.

I continue the estimation procedure by calculating individual choice probabilities for each

individual in the ACS microdata, Pijmt. Summing choice probabilities across individuals

and travel modes yields the expected number of visits to each park. Dividing the expected

number of visits by the sum of individual weights yields predicted visitation shares for each

park. Beginning with January 2005, I apply the contraction mapping to obtain the unique

vector of park effects that matches the predicted and observed visitation shares, given β̂.

Iteratively applying the contraction mapping month-by-month produces a full panel of park

effects through December 2019.

The key insight is that applying the contraction mapping to solve for park effects requires

predicting visitation shares but not observing individual-level choices. Thus, calculating park

effects outside the survey period only requires an estimate of β̂, a microdata sample, and

observed visitation shares.

5.3 Step 2: Estimating Preferences for Park Attributes

In step 2, I estimate equation (3), which explains park effects as a function of park at-

tributes. Because step 1a produces a panel of park effects, causal inference techniques,

such as difference-in-differences and event-studies, can be implemented to rigorously identify

preferences for park attributes. Previous work has called for more rigorous identification in

travel cost models (Lupi, Phaneuf, and von Haefen 2020). My approach offers a method for

blending modern econometric techniques with structural demand modeling.

Applying panel data econometric techniques within the structural model has several

benefits. In a reduced-form regression, attribute changes at one park may cause visitors to

substitute a visit with another park, biasing estimates. The model of park choice controls

for the quality of substitute parks when estimating park effects. Therefore, spillovers do

not bias estimates. The structural model also provides a framework for calculating welfare

impacts. In section 7, I leverage these benefits to estimate preferences for temperatures.
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I recover preferences for a broad range of park attributes using a correlated random effects

model with a Mundlak device. Some attributes, such as elevation and wildlife presence, do

not vary meaningful across a fifteen-year period. Other attributes, such as temperature,

vary dramatically across parks and across time. While including a flexible set of fixed

effects (e.g. park or park-by-season) has the attractive property of controlling for unobserved

attributes constant across time, the fixed effects would subsume preferences for time-invariant

attributes. The correlated random effects framework solves this issue. For attributes that

vary over time, it recovers identical estimates to a fixed effects approach, and it preserves

cross-sectional variation to recover preferences for time-invariant attributes (Mundlak 1978;

Wooldridge 2019). Specifically, I estimate:

δjt = Xjα0 + Xjtα1 + X̄jsα2 + νjt, (7)

where Xj includes attributes that do not change over time, Xjt includes attributes that

vary across time, and X̄js is the mean of of the time-varying attributes at park j in season s

for one of four seasons: December to February, March to May, June to August, or September

to November.

6 Results: Preferences for U.S. National Parks

Table 3 reports estimates of travel cost, travel mode, and heterogeneity coefficients for several

specifications of equation (1). For all specifications and all income groups, the travel cost

coefficient is negative and significantly different from zero. Individuals with lower incomes

are more sensitive to travel costs, consistent with a diminishing marginal utility of income.

Preferences for travel mode differ meaningfully by income group, but all prefer driving to

flying, on average. The low income group is willing to pay $37 extra per-trip to drive

rather than fly, while the middle and high income groups are willing to pay $453 and $674,

respectively. One explanation for the driving premium is flexibility, as driving allows groups
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Table 3: Estimates 2008 and 2018 Survey Periods

(1) (2) (3)
Travel cost ($100) -0.251 -0.250 -0.251

( 0.016) ( 0.015) ( 0.016)
Fly -0.945 -1.132 -1.131

( 0.087) ( 0.109) ( 0.109)
TC x income < $25,000 -0.277 -0.328 -0.326

( 0.022) ( 0.027) ( 0.027)
TC x income > $100,000 0.127 0.120 0.119

( 0.009) ( 0.009) ( 0.009)
Flying x income < $25,000 0.914 0.917

( 0.178) ( 0.177)
Flying x income > $100,000 0.351 0.241

( 0.131) ( 0.138)
Flying x parent 0.568

( 0.117)
Dissimilarity coefficient 0.657 0.662 0.654

( 0.042) ( 0.041) ( 0.042)

Note: The table shows estimates of the travel mode, travel
cost, and heterogeneity coefficients in equation 1 with stan-
dard errors in parentheses. Income interaction coefficients are
relative to the middle income group.

to adjust their schedule and add side trips. Higher income groups may be willing and able

to pay more for this flexibility. Although, the driving premium also reflects factors I do not

include in travel costs, such as airport parking fees, the risk of flight cancellations, or the

fuel efficiency, reliability, and size of respondents’ vehicles. The dissimilarity coefficient is

between zero and one, implying the nested logit model is consistent with utility maximizing

behavior (McFadden 1979). I use estimates from column 1 when calibrating the panel of

park effects, but I plan to use results with more heterogeneity in the future.

Figure 2 shows estimated monthly park effects for two parks: Glacier NP and Great

Smoky Mountains NP. The park effects should be interpreted relative to the no-visit option,

which is normalized to provide zero mean utility.5 The consistently negative park effects

indicate that potential visitors, on average, prefer the no-visit alternative to visiting a specific
5To change the interpretation, regress park-month effects on month-of-sample or park fixed effects and

take the residual as the new park-month effect.

21



park, even when that park has zero travel costs. In the model, individuals will only choose to

visit a park if it has a large, positive error term draw. In interpreting this result, it is helpful

to note that the no-visit alternative encompasses all ways to spend a month that do not

involve visiting a national park, not just staying at home. Additionally, park effect estimates

are sensitive to the specified number of choice occasions and the market size. Assuming

fewer choice occasions or a smaller market size raises park visitation shares and increases

park effects relative to the no-visit alternative.

Figure 2: The graph plots estimated park effects for Great Smoky Mountains NP (solid-
brown) and Glacier NP (dashed-blue) for each month in 2018. Both exhibit seasonal variation
that has been largely overlooked in the recreation demand literature.

Glacier’s park effects exhibit dramatic seasonal variation, peaking in the summer and

collapsing in the winter. Converting the seasonal difference to dollar terms, potential visitors

are willing to pay $1032 more, on average, to visit in July rather than in January. Great

Smoky Mountains displays a flatter peak period and less extreme winter decline. Similar

patterns at other parks suggest that temperature and climate drive seasonal variation in

park-month effects. I explore this further in section 7.

Results table 4 shows how park attributes impact park effects. Unshaded variables do not

vary meaningfully over fifteen years, either due to data availability or geophysical processes.
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Conditional on other observable attributes, average willingness to pay tends to be higher

at parks with redwood forests, bison, bald eagles, coastline, more roads, more trails, and

large elevation ranges, possibly a proxy for quality views. Population density in surrounding

counties is positively correlated with the park effects. This reflects the amenities nearby

a park, such as restaurants, hotels, and other attractions, but the estimate is likely biased

upward, because desirable, unobserved park attributes attract visitors and generate local

economic impacts. The land cover coefficient estimates suggest visitors appreciate barren

land, which includes rock and sand, more than other land cover types, such as forest, wet-

land, and grassland. Willingness to pay is lower for parks with grizzly bears and those with

more diverse land cover, measured using a standardized Herfindahl-Hirschman Index. These

results should be interpreted with caution, because they are identified with cross-sectional

variation and susceptible to omitted variables bias. Nonetheless, they provide the most ex-

tensive, revealed-preference evidence to date regarding what attracts visitors to U.S. national

parks.

The shaded coefficient estimates are identified by within-season variation at each park

and can also be obtained from a model including park-by-season fixed effects. More rainy

days in a month, either historically or contemporaneously, decreases willingness to pay, while

acreage changes have minimal impact. The national park designation coefficient reflects the

impact of switching a park’s designation to “national park” rather than one of the various

other designations. Redesignating units as official national parks has been proposed as a

possible solution to reduce crowding at other parks by increasing the profile of substitute

parks. I provide evidence from a limited set of redesignations; the coefficient is identified

from only three parks (Pinnacles, Gateway Arch, and Indiana Dunes) that received their

official designation between 2005 and 2019. Based on this evidence, redesignation seems

unlikely to cause substitution away from other parks. Szabó and Ujhelyi (2021) examine

a broader set of redesignations and find that an official national park designation increases

visitation. My results indicate that the impact of redesignation may vary depending on
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Table 4: Preferences for Park Attributes

Coefficient WTP

Redwoods present 0.872* 347
(0.508)

Bison present 0.296 118
(0.268)

Bald eagles present 0.152 60
(0.147)

Coastal 0.087 35
(0.262)

Elevation range (1000 ft) 0.052* 21
(0.031)

Land cover share: barren land 0.020** 8
(0.007)

Trail miles (10 miles) 0.017** 7
(0.005)

Nearby population density (100 per sq mile) 0.008** 3
(0.002)

Road miles (10 miles) 0.002 1
(0.004)

Land cover share: shrub/scrub 0.003 1
(0.003)

Lake acreage (100 acres) 0.000 0
(0.000)

Acreage (10k) 0.001 0
(0.002)

Trail miles x elevation range 0.000 0
(0.001)

Rainy days -0.005** -2
(0.001)

Land cover share: grassland -0.009* -3
(0.004)

Average number of rainy days -0.013** -5
(0.006)

Land cover share: emergent wetland -0.014 -6
(0.010)

Land cover share: mixed forest -0.016** -7
(0.006)

National Park designation -0.027* -11
(0.014)

Coastal x elevation range -0.070 -28
(0.093)

Land cover diversity (standardized) -0.311** -124
(0.110)

Grizzly bears present -0.806** -321
(0.388)

R-squared: 0.557

* - Significant at 90% Level, ** - Significant at 95% Level. Esti-
mates for shaded variables are equivalent to estimates from a model
including park-by-season fixed effects. Unshaded variables use only
between-park variation. Flexible temperature controls are also in-
cluded. Willingness to pay (WTP) is calculated by dividing each at-
tribute coefficient by the travel cost coefficient for the middle income
group and multiplying by 100. 24



the context and motivate research on recent redesignations to inform the on-going policy

discussion.

Even with this broad array of park attributes and temperature controls, roughly 44%

of the variation in park effects remains unexplained. Given the unique resources the parks

protect, this is not surprising. It is difficult to estimate the value of iconic park attributes,

such as Arches’ arches or Yellowstone’s Old Faithful geyser, which are often idiosyncratic

and remain largely unchanged over time.

By capturing mean utilities after controlling for travel costs, monthly park effects provide

a national park awesomeness index. Table 5 shows the implied ranking for 2018 based on

parks’ maximum park effect throughout the year. I convert the park effects to a 100-point

scale, providing a rating for each park. The maximum park effect between 2005 and 2019

scores 100 and the minimum scores 0. This ranking method offers an attractive alternative

to rankings from the popular media that are typically based on travel bloggers’ personal

experiences or raw visitation counts. Unlike experience-based rankings, it is systematic

and incorporates the visitation history of the entire U.S. population. Unlike raw visitation

rankings, it controls for the travel costs of reaching a park, isolating the appeal of the park

itself.

The top ten ranking includes many of the most famous national parks, such as Glacier,

Yellowstone, and Grand Canyon. One surprising result is that Golden Gate National Recre-

ation Area tops the list. Golden Gate provides views of the famous Golden Gate Bridge,

beaches, hiking trails, and popular attractions like Alcatraz Island, but for several reasons,

its ranking is likely inflated. Although the model controls for the travel costs of access-

ing each park, it does not control for complementary destinations near a park. Visitors to

Golden Gate likely visit other Bay Area attractions on the same trip, while Glacier NP, for

example, has fewer convenient complementary attractions. Furthermore, local residents may

visit Golden Gate several times per month, or even several times per week. The model’s

assumption of one choice occasion per month seems appropriate for most people and most
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Table 5: Most Awesome National Parks

Rank Park Rating
1 Golden Gate RA 97.4
2 Glacier 93.9
3 Yellowstone 92.9
4 Grand Canyon 92.5
5 Grand Teton 91.9
6 Mount Rainier 91.4
7 Acadia 91.0
8 Rocky Mountain 90.9
9 Olympic 90.6
10 Zion 90.5

Note: The National Park awesomeness index combines visi-
tation and travel cost data to rank parks by the mean utility
they provide visitors. The ranking reflects each parks maxi-
mum park effect throughout 2018.

parks, but it is likely too coarse for local residents. This potentially biases Golden Gate’s

park effect upward.

7 How does Temperature Impact Demand?

In this section, I apply the model and data infrastructure to study preferences for temper-

ature. This provides insights for understanding how climate change will impact visitation

patterns. It also provides a blueprint for applying the the framework to study other chal-

lenges facing the National Park System.

To begin, I filter the visitation data through the demand system, as described in sections

5.1 and 5.2. Then, I specify a particular functional form of equation (3). Motivated by

Bento et al. (2020), I decompose temperature impacts into long-run differences in average

temperatures and short-run shocks. I bin average temperatures to flexibly capture non-

linearity, and I estimate the impacts of shocks separately for each average temperature bin.

I write the park effect for park j in month t as
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δjt =
∑

b

αb
avg1(tempjt ∈ b) +

∑
b

αb
shock(tempjt − tempjt)1(tempjt ∈ b) + αXjt + γjs + ϕt + νjt,

(8)

where the variable tempjt represents the average temperature at park j over the past

ten years in the same calendar month as month t (e.g. the previous ten June’s if t is June).

Thus, tempjt is, roughly, the anticipated or expected temperature, if a potential visitor were

planning a trip more than a few weeks in advance. The variable tempjt represents the (mean

daily high) temperature at park j in month t. It measures the realized temperature in

month t. Taking the difference, (tempjt − tempjt) represents the realized deviation from the

moving average temperature in month t, or the short-run temperature shock. Including αb
avg

coefficients for each temperature bin allows for a non-linear relationship between average

temperatures and monthly park effects. By interacting average temperature bins with the

temperature shocks, the αb
shock coefficients allow for the impact of a temperature shock to

vary depending on the average temperature.

Equation (8) also includes precipitation controls, Xjt, and a flexible set of fixed effects

to identify the causal impact of temperature. The γjs is a park-by-season fixed effect whose

inclusion allows me to isolate variation within a park-season. Here, I specify four seasons:

December to February, March to May, June to August, and September to November. The

ϕt further controls for system-wide factors affecting demand, such as the number of weekend

days in a month. The final term, νjt, includes unobservable attributes of park j at time t.

Results figure 3 shows that visiting a park provides the most surplus when average high

temperatures fall between 70◦F and 85◦F. Willingness to pay decreases sharply as temper-

atures become colder. Relative to 70◦F, visiting when the temperature is 30◦F reduces

willingness to pay by $503 per-trip, on average. Moving from the ideal range to extremely

hot temperatures also reduces willingness to pay, but not as dramatically. Visiting a park

when the average high temperature is 95◦F reduces willingness to pay by just $107.
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Figure 3: The figure shows potential visitors’ willingness to pay for a park visit across
long-run average temperatures. All estimates are relative to the 75◦F bin.

Preferences for short-run temperature shocks vary intuitively across average tempera-

tures (figure 4). When temperatures are cold, positive shocks increase willingness to pay,

peaking at $6 for a one degree temperature increase between 40◦F and 55◦F. At ideal tem-

peratures, a small shock has little impact, and at hot temperatures, the impact of a shock

is indistinguishable from zero.

Results figure 5 compares the impact of equal-sized average temperature differences and

shocks. When temperature differences impact willingness to pay most, at 50◦F, a 5◦F increase

in average temperatures raises willingness to pay by $107 compared to a $32 increase for

a 5◦F shock. At higher temperatures, increasing average temperatures from 90◦F to 95◦F

reduces average willingness to pay by $39 per-trip, while a short-run shock has little impact.

The magnitude of willingness to pay for changes in average temperatures is greater at nearly

every temperature. This result may be driven by visitors that plan trips far in advance

and cannot observe short-run shocks when making their choice. After committing to their

trip, it may be costly to cancel or substitute to another location, minimizing the observable
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Figure 4: The figure shows potential visitors’ willingness to pay for a one degree Farehnheit
positive temperature shock.

Figure 5: The graph shows the willingness to pay for a five degree increase in long-run
average temperature (blue bars) and short-run temperature shocks (brown dots) by long-run
average temperature. It provides a uniform change in temperature for comparing estimates
displayed in figures 3 and 4.
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response to short-run shocks. Visitors may also respond to shocks by changing behavior on

their trip, such as spending less time in the park, but I cannot observe within-trip responses

in the survey or visitor count data. Thus, my results may understate the impact of short-run

temperature shocks.

For both long-run temperatures differences and short-run shocks, the benefits of making

cooler temperatures warmer far outweigh the costs of making hot temperatures hotter. This

suggests that climate change may increase the surplus generated by the national parks.

These findings come with the important caveat that my estimates do not account for how

climate change will impact park resources. An increased frequency of wildfires and flooding,

sea level rise, and possible species extinctions are just a few ways that climate change will

alter the national parks. Understanding these broader climate impacts is important, and my

framework provides a strong foundation for future research on these topics.

8 Conclusion

This paper creates a versatile framework to study demand for U.S. national parks. The

results describe general preferences for national parks and their attributes. On average,

potential visitors are willing to pay $376 more to drive rather than fly to a park, conditional

on travel costs. Willingness to pay tends to be higher at parks with iconic wildlife, wide-

ranging elevation, and coastline, and it varies dramatically across seasons, especially for parks

with harsh winters. The national park awesomeness index provides a systematic alternative

to existing rankings that controls for travel costs. It ranks many of the most famous parks

in the top ten. Observable park attributes explain 56% of variation in the index, meaning

idiosyncratic, unobservable, or difficult to quantify attributes play an important role in

driving visitation.

I demonstrate the versatility of the framework by estimating willingness to pay for long-

run average temperature differences and for short-run temperature shocks. Potential visitors
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prefer average high temperatures between 70◦F to 85◦F and respond to long-run differences

more than short-run shocks. Long-run average temperatures of 95◦F are preferred to 30◦F

by roughly $400. Without considering changes to park attributes, this suggests warming

temperatures may increase the welfare generated by national parks. As the next step for the

project, I plan to use my temperature preference estimates to simulate welfare changes under

future climate projections, quantifying the welfare impact of climate change on national park

visitation.

The model, data infrastructure, and estimation procedure have the potential to generate

future research on national parks and recreation demand more broadly. The estimation pro-

cedure provides a method to control for changing travel costs and demand system spillovers

when conducting causal inference. It filters visitor count data through a structural model,

allowing for welfare analysis and counterfactual simulations, and it bridges gaps between

individual-survey efforts. The framework is relevant for policy and management decisions

surrounding many challenges facing the National Park System, such as crowding, the impacts

of wildfires, and infrastructure investments. This is particularly important given recent leg-

islative actions, which provide new resources for the continued conservation of the country’s

most treasured resources.
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